\frac{d}{dx}Tan(X)=\frac{d}{dx} (\frac{Sin(x)}{Cos(x)})

Sin(x)=\frac{e^{ix} –  e^{-ix}}{2i}

Cos(x)=\frac{e^{ix} +  e^{-ix}}{2}

\frac{e^{ix} –  e^{-ix}}{2i} \frac {2}{e^{ix} +  e^{-ix}}

Cancel the 2s

\frac{e^{ix} –  e^{-ix}}{i} \frac {1}{e^{ix} +  e^{-ix}}

Multiply by

\frac{i}{i}

 to clear the i from the denominator

\frac{e^{ix} –  e^{-ix}}{i} \frac {1}{e^{ix} +  e^{-ix}} \frac {i}{i}

i * i = -1

-i * \frac {d}{dx} (  \frac {e^{ix} –  e^{-ix}} {e^{ix} +  e^{-ix}} )

f(x) = e^{ix}  –  e^{-ix}

g(x) = e^{ix} +  e^{-ix}

-i *\frac{g(x) \frac{d}{dx} f(x)  –  f(x) \frac{d}{dx} g(x)}{( g(x) )^2}

Start by solving the top of the equation.

-i * g(x) \frac{d}{dx} f(x) – f(x) \frac{d}{dx} g(x)

-i * [  ( e^{ix} + e^{-ix} ) ( i * e^{ix} + i * e^{-ix} ) ] – [ ( e^{ix} – e^{-ix} ) ( i * e^{ix}  –  i * e^{-ix} ) ]

-i *  [ i * e^{2ix} + i  + i + e^{-2ix} ] – [ i * e^{2ix} – i – i  +e^{-2ix} ]

expand – through right side of equation

-i *  [ i * e^{2ix} + (2 * i) + e^{-2ix}  –  i * e^{2ix} + (2 * i )  –  e^{-2ix} ]

-i * [ 4 * i ]

top  half = 4

bottom half of equation is

( e^{ix} + e^{-ix}) ( e^{ix} + e^{-ix}) 

e^{2ix} + i + i + e^{-2ix}

Final  Bottom Answer is:

e^{2ix}+( 2 * i ) + e^{-2ix}

Final answer

\frac{4}{e^{2ix}+( 2 * i ) + e^{-2ix}}

Break down d/dx Tan(x)

\frac{d}{dx} Tan(x) = \frac{4}{e^{2ix} + ( 2 * i ) + e^{-2ix}}

\frac{d}{dx} Tan(x) = \frac{1}{cos^2(x)}

\frac{1}{cos^2(x)} = \frac{2^{2}}{( e^{ix} + e^{-ix} ) ^{2}}

\frac{1}{ cos^{2}(x) } = sec^{2}(x) = \frac{4}{e^{2ix} + ( 2 * i ) + e^{-2ix}}