∫Sin(x)=−Cos(x) \int Sin(x) = -Cos(x) ∫Sin(x)=−Cos(x) ∫Sin(x)=eix – e−ix2i \int Sin(x) = \frac {e^{ix} – e^{-ix}}{2i} ∫Sin(x)=2ieix – e−ix ∫eix2i –∫e−ix2i \int \frac{e^{ix}}{2i} – \int \frac{e^{-ix}}{2i} ∫2ieix –∫2ie−ix eix2i2 – (–e−ix2i2) \frac{e^{ix}}{2i^{2}} – ( – \frac {e^{-ix}}{2i^{2}} ) 2i2eix – (–2i2e−ix) eix2i2 +e−ix2i2 \frac{e^{ix}}{2i^{2}} + \frac {e^{-ix}}{2i^{2}} 2i2eix +2i2e−ix i2=−1 i^{2} = -1 i2=−1 –eix2 – e−ix2 – \frac{e^{ix}}{2} – \frac{e^{-ix}}{2} –2eix – 2e−ix Factor out -1 –(eix + e−ix2)=−Cos(x) – (\frac{e^{ix} + e^{-ix}}{2}) = -Cos(x) –(2eix + e−ix)=−Cos(x)